- Home
- About Us
 - o Company Profile
 - Corporate Profile
 - Vision, Mission, Values
 - Management
 - Board of Directors
 - Locations
 - Calendar of Events
 - Customer Testimonials
 - Careers
 - Contact Us
 - Corporate Governance
 - Code Of Business Ethics and Conduct
 - Audit Committee Charter
 - Compensation Committee Charter
 - Nominating and Corporate Governance Committee Charter
- Products
 - Air Pollution Control
 - Overview
 - Low NO_Burners
 - Over-Fire Air Systems
 - ASCR™ Advanced SCR
 - SNCR Systems NO OUT® and HERT™
 - o Rich Reagent Injection (RRI)
 - ∘ ULTRA™
 - ULTRA-5[™]
 - NO OUT CASCADE®
 - NO OUT SCR®
 - Static Mixers
 - Ammonia Injection Grid (AIG)
 - GSG™ Graduated Straightening Grid
 - SCR Catalyst Management Services
 - Flue Gas Conditioning
 - Urea Reagent
 - FUEL CHEM
 - Overview
 - TIFI® Targeted In-Furnace Injection
 - TIFI MG™
 - TIFI HybridTM
 - TIFI XP™
 - TIFI MP™
 - TIFI Flux[™]
 - TIFI BlueCat[™]
 - TCI® Targeted Corrosion Inhibition™
 - Fireshield®
 - Aftermarket Parts and Services

Contact Us

- Services
 - Modeling
 - Overview
 - Computational Fluid Dynamics (CFD)
 - Experimental Modeling
 - Virtual Vantage®
 - Combustion Testing
 - Coal Flow
 - Air Flow
 - SCR Services
 - Overview
- Solutions
 - Boiler Operations
 - Overview
 - Fuel Flexibility
 - Slag Control
 - Air Pollution Control
 - Overview
 - <u>NO</u>
 - ∘ <u>SO</u>₃
 - ∘ <u>SO</u>₂
 - ∘ <u>PM</u>_{2.5}
 - US Regulations
 - Overview
 - Current Air Regulatory Drivers
 - Clean Air Act
 - Cross-State Air Pollution Rule (CSAPR)
 - Clean Air Visibility Rule (CAVR)
 - Industrial Boiler (MACT)
 - Past Regulatory Drivers
 - Clean Air Transport Rule (CATR)
 - Clean Air Interstate Rule (CAIR)
 - o NO SIP Call
 - Ozone Transport Commission
- News
 - Press Releases
 - Earnings Releases
 - In The News
 - Conference Calls
- Library
 - o <u>Technical Papers</u>
 - <u>Literature</u>
 - Presentations
- Investors
 - Investor Information
 - Corporate Profile

http://www.ftek.com/en-US/products/apc/noxout/

- Stock Information
- Investor Materials
- Earnings Releases
- Press Releases
- Locations
- Contact Us

Company Reports

- Annual Reports
- Form 10-K & Form 10-Q
- Proxy Materials
- SEC Filings

Upcoming Events

November 6, 2012 @ 9:00AM ET Fuel Tech Reports 3Q12 Results

November 14-15, 2012

Power Experts Conference

Marriott Downtown

Atlanta, GA

December 11-13, 2012
POWER-GEN International
Orange County Convention Center
Orlando, FL

More

<u>Home</u> > <u>Products</u> > <u>SNCR Systems - NO_xOUT® and HERT™</u>

SNCR Systems - NO_XOUT^{\oplus} and HERTTM

- Urea-based Selective Non-Catalytic Reduction (SNCR)
- 25% 50% NO_x Reduction
- Over 520 Installations Worldwide

NO_OUT® SNCR Process

The NOxOUT® SNCR Process is a urea-based Selective Non-Catalytic Reduction (SNCR) process for reduction of oxides of nitrogen (NO_x) from stationary combustion sources. The process requires precisely engineered injection of stabilized urea liquor into

combustion flue gas temperatures as high as 2500° F. Fuel Tech customizes the design and injection strategy for each application since most NO_{χ} reduction occurs in a temperature range between 1650°F - 2100°F. As shown in the diagram, the injection is typically

multi-level and controlled automatically to adjust urea injection in response to boiler load changes and changing furnace conditions.

HERT™ High Energy Reagent Technology™ SNCR System

The HERT™ System uses a high energy injection strategy to inject urea into the furnace. Depending on the specifics of each application, the injection can be through the over-fire air or by using a dedicated air stream provided by a small, separate blower skid. The HERT™ systems have met NO_x reductions guarantees on commercial installations while minimizing ammonia slip with this patented injection process.

The SNCR systems provided by Fuel Tech may include NO_xOUT® injectors along with HERTTM System Injection technology, using the same urea storage, handling and control components. Fuel Tech's SNCR applications rely heavily on the use of <u>Computational Fluid Dynamics</u> (CFD) models and <u>Chemical Kinetics Modeling</u> and their resulting visualization utilizing proprietary software. Our NO_xOUT SNCR technology is sufficiently flexible to apply to a variety of commercial and process combustion units, as detailed below.

Technology Injections
ent • Maximize performance with minimal ammonia slip • Localized NO _x reduction

Fuels

- Coal
- Lignite
- Oil
- Gas
- Municipal Solid Waste
 - Sludge
 - Wood
 - o Biomass
 - Refinery/CO Gas

Process Combustion Units Commercial Combustion Units

- Cement Kilns
- Glass Furnaces
- Ethylene Furnaces
 - Calciners
 - Coke Ovens
 - Lime Kilns
- Tangentially-Fired Utility Boilers
- Cyclone-Fired Utility Boilers
- Wall-Fired Utility Boilers (wet & dry)
- Refinery Crude Heaters and CO Boilers
- Sludge Combustors
- Industrial Power Boilers
- Municipal Waste

Combustors

- Incinerators
- Circulating Fluidized Bed Boilers
- Stoker-Fired Boilers Burning Wood and Coal
- Package Boilers

From a compliance standpoint, the NO_XOUT® process has been used to satisfy Best Available Control Technology (BACT) requirements for Municipal Solid Waste combustors, coal-fired Independent Power Producer (IPP) units, and fluidized bed boilers. The SNCR process has been used to comply with Reasonably Available Control Technology (RACT) requirements in ozone non-attainment areas and Administrative Compliance Orders in specific

locales.

A primary feature of the NO $_{\rm x}$ OUT® and HERT $^{\rm TM}$ processes is the ease of combination with other NO $_{\rm x}$ reduction technologies. Combinations that have been retrofit with the NO $_{\rm x}$ OUT® process are low NO $_{\rm x}$ burners, over-fire air, combustion tempering, neural network controls, and gas reburn. Fuel Tech's patented <u>ASCR $^{\rm TM}$ Advanced SCR</u> process combines a variety of technologies to provide up to 80+% NO $_{\rm x}$ reductions at a fraction of the cost of conventional SCR systems.

Related Documents

SNCR - NOxOUT® and HERT™ Systems Brochure

ASCR™ Brochure

The design and operation of an Advanced NO Control System on 636TPD MWC at Lee

County WTE Facility

Brace and at NAWTEC 0000

Presented at NAWTEC 2009

<u>Demonstration of NO_x Emissions Below 0.15lb/MBtu in a Cyclone Boiler Using In-Furnace NO_x Control</u>

NOx Control Technologies: Focus SNCR

Presented at the Western Coal Council, Burning PRB Coal Seminar, 2001

<u>First Installation of Selective Non-Catalytic NO_x Reduction Process on Utility Boilers in Korea</u>

Presented at the U.S. EPA/DOE/EPRI Mega Symposium, 2001

© 1998-2012 Fuel Tech, Inc. All Rights Reserved. Please Read This <u>Legal</u> Notice and Privacy Statement.